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Abstract—We establish an approximation and compactness
results in inhomogeneous Musielak-Orlicz-Sobolev spaces, then
we shall give the proof of existence results for the entropy
solutions of the following nonlinear parabolic problem

% —div(a(z,t,u, Vu)

u(z,0) = uo(z) in Q
u=0 on 9N x (0,T).

—div(®(z,t,u))) = f in Qr

Where Qr = Q x (0,7) and the growth and the coercivity
conditions on the monotone vector field a are prescribed by a
generalized N-function )M/. We assume any restriction on M,
therefore we work with Musielak-Orlicz spaces which are not nec-
essarily reflexive. The lower order term ® :Qx (0, 7) xR — R” is
a Carathéodory function, for a.e. (z,t) € Qr and for all s € R,
satisfying only a growth condition and the right hand side f
belongs to L'(Qr).

Index Terms—Non-linear Parabolic problems; Musielak-Orlicz
spaces; Entropy Solutions; Non-coercive Problems; Lower order
term.

I. INTRODUCTION

In the last decade, there has been an increasing interest
in the study of various mathematical problems in modular
spaces. These problems have many consideration in applica-
tions (see [14], [38], [41]) and have resulted in a renewal
interest in Lebesgue and Sobolev spaces with variable ex-
ponent, Musielak, Orlicz space, the origins of which can
be traced back to the work of Orlicz in the 1930s. In the
1950s, this study was carried on by Nakano [34] who made
the first systematic study of spaces with variable exponent.
Later, Polish and Czechoslovak mathematicians investigated
the modular function spaces (see for example Musielak [32],
Kovacik and Rakosnik [26]). The study of variational problems
where the function «(.) satisfies the non-polynomial growth
conditions instead of having the usual p-structure arouses
much interest with the development of applications to electro-
rheological fluids as an important class of non-Newtonian
fluids (sometimes referred to as smart fluids). The electro-
rheological fluids are characterized by their ability to dras-
tically change the mechanical properties under the influence
of an external electromagnetic field. A mathematical model
of electro-rheological fluids was proposed by Rajagopal and
Ruzicka (we refer to [37], [38] for more details). Another
important application is related to image processing [39] where

this kind of the diffusion operator is used to underline the
borders of the distorted image and to eliminate the noise.

In point of mathematical physics view, it is hard task to
show the existence of classical solutions, i.e., solutions which
are continuously differentiable as many times as the order
of derivatives in equations under consideration. However, the
concept of weak solutions is not enough to give a formulation
to all problems and does not provide uniqueness and stability
properties. Hence, as a certain more general idea, we can
use the notion of entropy solution which we have to assume
in addition to the weak formulation of the problem certain
inequalities.

In this work, we deal with the existence result of the en-
tropy solutions for the following nonlinear parabolic problem
without assuming any restriction on the N-function M

ge —div(ale,t,u, Vu) ) = div(® (e, ) = f in Qr
u(x,0) = ug(x) in Q
u=0 on 0N x(0,T),

Ll(QT), Au =
is a Leray-Lions operator defined on

where the data
—div (a(a:, t,u, Vu))
Wy* Las(Qr). The lower order term ® :Qx (0, T) xR — RV
is a Carathéodory function, for a.e. (z,t) € Qp and for all
s € R, satisfying only a growth condition and not necessarily
coercive.

The notion of renormalized solution has been introduced by
Lions and Di Perna [15] for the study of Boltzmann equation
(see also P.-L. Lions [29] for a few applications to fluid
mechanics models). This notion was then adapted to elliptic
version by Boccardo, J.-L. Diaz, D. Giachetti, F.Murat [13]
and F. Murat [31]. At the same the equivalent notion of entropy
solutions has been developed independently by Bénilan and
al. [11] for the study of nonlinear elliptic problems.

The study of the parabolic equations in Orlicz spaces have
been a topic for many years, starting from the work of
Donaldson [16] and with later results of Benkirane, Elmahi
and Meskine, (see [7], [17], [18]). All of them concern the
case of classical spaces, namely Orlicz spaces with an N-
function dependent only on x without the dependence on
(t,z). We prove our result without any restriction on the
growth of an NN-function, in particular the A,-condition for
an N-function and its conjugate. This results in a need of

f Dbelongs to
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formulating the approximation theorem and extensively using
the notion of modular convergence. The fundamental studies
in this direction are due to Gossez for the case of elliptic
equations [20], [21]. The appearance of (x,t)-dependence in
an N-function requires the studies on the uniform boundedness
of the convolution operator. Existence of entropy solution
with L!-data has been proved by Leone and Porretta in [28]
for the Dirichlet problem associated to the nonlinear elliptic
equation —diV(a(x,u,Vu)) = f in the classical Sobolev
spaces W1P(Q). In [36] the existence and uniqueness of
entropy solutions of the problem (1) has been studied by
Prignet where ® = 0 and Au = —div(a(;v,hu,Vu))
Leray-Lions operator in divergence form acting on W17 ().
The existence of renormalized solutions of the problem (1) in
Orlicz spaces has been proved in [24].

As far as we know, there’s not much papers concerned with the
nonlinear parabolic equations with obstacle in Musielak-Orlicz
spaces with L' data, in the context of renormalized solution we
refer to the work of Gwiazda, Wittbold and al. in [22] where
the existence proof related to a nonlinear parabolic problem
with L'-data in Musielak spaces requires a very technical
construction of multistage approximation of the solution. In
particular it is based on nonlinear semi-group theory of m-
accretive operators, but the authors assume that M satisfies
the As-condition and the proof was based on the modular
Poincaré inequality, we refer also to [23] for the elliptic case
without As-condition on M.

Other difficulties associated with the existence of entropy
solutions of the problem (1) lie in the fact that the term
div(®(z,t,u)) can not be managed by the divergence theorem
and the general Musielak function M does not have to satisfy
the suitable condition Ay which induces a loss of reflexivity
of our framework setting.

Our main goal of this paper is to prove the existence of an
entropy solution of the problem (1) in the sense of Definition
5.1. (see section IV) for a general N-function M.

is a

II. PRELIMENARY

In this section we list briefly some definitions and facts
about Musielak-Orlicz-Sobolev spaces. A standard reference
is [32]. We also include the definition of inhomogeneous
Musielak-Orlicz-Sobolev spaces and some preliminaries lem-
mas to be used later on this paper.

Musielak-Orlicz spaces: Let © be a domain in R%, d € N.
Definition 2.1: Let M : 2 xR — R be a function such that:
(i) For almost all (a. a) « € £, M(z,-) is an N-
function, that is, convex and even in R, increasing in
R*, M(x,0) =0, M(z,s) > 0 for all s > 0,
lim M(z,s) M(z,s)

=0, lim =% o
s—0 S 5—00 S

(ii) For all s € R, M(-,s) is a measurable function.

A function M (x,s) which satisfies the conditions (i) and
(ii) is called a Musielak-Orlicz function, a generalized N-
function or a generalized modular function.

From now on, M: Q x R — R will stand for a general
Musielak-Orlicz function. In some situations, the growth order
with respect to ¢ of two given Musielak-Orlicz functions M
and P are comparable. This concept is detailed in the next
definition.
Definition 2.2: Let P: 2 x R — R be another Musielak-
Orlicz function.
o Assume that there exist two constants ¢ > 0 and
so > 0 such that for a. a. z € Q one has P(z,s) <
M (z,es) for all s > sg. Then we write P < M and we
say that M dominates P globally if s; = 0 and near
infinity if so > 0.

o« We say that P grows essentially less rapidly than M
at s = 0 (respectively, near infinity), and we write P <
M, if for every positive constant ky we have

lim sup (&2 F08)

i sup L kos)
t—0z€EQ M(%S) 5

= 0 (respectively,
(resp Y t—o00 TEQ M(x,s)

We will also use the following notation: M, (s) = M (x, s),
for a. a. z € Q and all s € R, and we associate its inverse
function with respect to s > 0, denoted by M~ 1 that is,

MY (M(z,8)) = M(z, M;'(s)) = s, forall s> 0.

x

Remark 2.3: 1t is easy to check that P < M near infinity
if and only if

M1k
lim 7“3_1( 03)
s—00 Pz (S)

for some null subset Qg C Q.00
We introduce the functional o7 given by

QM,sz(U):/QM(x,u(x))dx,

for any Lebesgue measurable function u: Q — R. The set

= 0 uniformly for z € Q\ Qo

L () = {u: Q — R mesurable such that gprq(u) < oo}

is called the Musielak-Orlicz class related to M in 2 or
simply the Musielak-Orlicz class.

The Musielak-Orlicz space L;/(£2) is the vector space
generated by L£/(2), that is, Ly(€2) is the smallest linear
space containing the set £7(€2). Equivalently,

Ly () = {u: Q@ — R mesurable such that g7 .q(u/a) < oo,

for some a > 0}.
For a Musielak-Orlicz function M, we introduce its com-
plementary function, denoted by M, as

M(x,r) = sup{rs — M(x,s)},
s>0
that is M (z,) is the complementary to M (z, s) in the sense
of Young with respect to the variable r. It turns out that M
is another Musielak-Orlicz function and the following Young-
Fenchel inequality holds

|sr| < M(z,s) + M(xz,r) for all s,r € R and a. a. z € Q.
2)
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In the space Ly, (€2) we define the following two norms:

llullara = inf{)\ > 0//QM(ac,u(x)/)\) dz < 1}7

which is called the Luxemburg norm, and the so-called
Orlicz norm, namely

sup /u(m)v(:c)dx.
2i1,0()<1/Q

where the supremum is taken over all v € Ly (q) such that
oiro(v) < 1. An important inequality in L/ (€2) is the
following:

HUH(M),Q =

/Q Mz, u(z)) dz < ullng 3)

for all u € Lps(€2) such that [|ul[(ar),o < 1, where from we
readily deduce

"l
From the definition of the Orlicz norm and (2) it is easy to
obtain the inequality

) da <1 for all u € Ly (Q)\ {0}. @)

||’U/H(]\/[)VQ < 1+/ M (z,u(x))dx, for all u € Ly (). (5)
Q

It can be shown that the norm || - [|(ar), is equivalent to
the Luxemburg norm || - || as,o. Indeed,

||uHM@ § ||u||(]\4)7Q § 2||'ILH]VLQ fOI‘ all u e LM(Q) (6)

Also, Holder’s inequality holds

/Q|U(x)v(l‘)|dx < ullarellvll .o

for all w € Ly (2) and v € Ly;(€2), Most properties verified

by the classical Orlicz spaces cannot be extended to the
Musielak-Orlicz spaces unless we assume certain supplemen-
tary hypotheses on the generalized N-function M. To this end,
we first introduce the two following assumptions.

om.a(MXx) < oo for any A > 0 and any compact set K C Q.

)

There exist two positive constants A\g and ¢ such that
{ essQinfM(x,/\o) > ¢p.

®)
In (7), X4 stands for the characteristic function of a mea-
surable set A. The assumption (7) assures that any bounded
measurable function with compact support in € is in the class
L7(€2). In this situation, we may introduce the space Ejs (1)
as the closure in L/ () of the bounded measurable functions
with compact support in 2. The space Ej;(f2) is then the
largest linear space such that E/(2) C L£,(€2), this inclusion
being in general strict. Notice that if €2 is bounded then (7)
implies the inclusion L () C L ().

On the other hand, the assumption (8) implies that any
function in L, (€2) is locally integrable in 2. This is stated in
the following result.

Lemma 2.4: Assume (8). Then the inclusion L,/ () C
L .(Q) holds true. Moreover, if || et meas({2) < oo, then

Ly () € LY(Q) with continuous inclusion, that is
||u||L1(Q) < C’1||uH(M)’Q for all u € LM(Q),

where Cl = /\0(|Q| + 1/60).
Proof 2.5: According to the convexity of M (z,-) we obtain

sM(z, ) < AoM(z,s) for all s > A\ and a. a. z € Q.

Let u € Lp(2) and A C £ a measurable set with |A| < co.
Take o > 0 such that gpr0(u/a) < co. Then,

=/ N H
Al An{|u|<axo} ¥ An{|u|>axro} ¥

1
<nolal+ o | 12| e, 20)
€0 JAN{|u|>ar} '

< olA] + %fQM(x,%) < 00,

and thus u € L'(A). If |©2] < oo, we may take A = €2 and
a = |ul|(ar),o in the estimate above. Using (4) it yields

1
/ lu| < >\0(|Q| + *) llull(ar),0-
Q Co

From now on, we will assume both assumptions (7) and (8)
in this paper.

Strong convergence in Ljs(£2) is rather strict. For most
purposes, a mild concept of convergence will be enough,
namely, that of modular convergence.

Definition 2.6: We say that a sequence (u,) C L () is
modular convergent to u € Ly (£2) if there exists a constant
A > 0 such that

Musielak-Orlicz-Sobolev spaces: According to Lemma 2.4,
any function in L, () is locally integrable and, in particular,
may be considered as a distribution. This allows us to intro-
duce the so-called Musielak-Orlicz-Sobolev spaces. For any
fixed nonnegative integer m we define

W™ L () = {u € Ly () / D% € Lps () for all o, |a] < m}

where a = (a1, @9, ...,aq) € Z, a; > 0, j =1,...,d, with
la] = a1 + as + ... + ag and D%u denote the distributional
derivative of multiindex . The space W™ L (2) is called
the Musielak-Orlicz-Sobolev space (of order m).

Let w € W™Ly(Q), we define ngﬁz(u) =
Z\a|§m QM’Q(DOCUL and

|7 = inf{x > 0/ 0§74 (u/X) < 1},

[ullmare = Y 1Dullarq-

|| <m
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The functional gg\?(z is convex in W™ Ly (§2), whereas the

functionals || - ng?)g and || - ||;m, M0 are equivalent norms on
W™ Ly (). The pair (W™ Ly (), ]| - |$7,) is a Banach
space under the assumption (8). 7

The space W™Ljp(€2) is identified to a subspace of
the product Iljq <, Lar(2) = TIILyps, this subspace is
o(I1L s, IIE ;) closed.

Let W{"Lp(Q) be the o(IILy, IIE;) closure of D()
in WMLy (). Let W™ Ep(€2) be the space of functions u
such that » and its distribution derivatives up to order m lie
in Ep(Q), and W Ep(£2) is the (norm) closure of D(Q2) in
W™ Lar(§2).

Since we are going to work with two generalized N-
functions, say P and M, such that P < M, we will consider
the following assumptions for both complementary functions
P and M:

M
lim essinf (,€) = 00, 9
|€| o0 zEQ €]
and P
lim essinf (z,¢) =00 (10)
lglso0 weQ []

Remark 2.7: From Remark 2.1 in [22] we have that the
assumptions (9) and (10) provide the following:

sup esssup M(z,£) < oo for all 0 < R < +oo, (11)
¢cB(0,R) z€9
and
sup esssup P(z,£) < oo forall 0 < R < +o0. (12)
£eB(0,R) z€Q

Also notice that (11) implies (7).

Definition 2.8: We say that a sequence (u,,) C WLy (£2)
converges to u € WLy (Q) for the modular convergence
in WLy (Q) if, for some h > 0,

im0l (wn —w)/h) =0.

The following spaces of distributions will also be used:

WLy (@) ={reD(@/f= > (-nID°f,

| <1

for some f, € LM(Q)}

W ER(Q) = {feD@)/f= Y (1D,

laf<1
for some f, € EM(Q)}

Lemma 2.9: If P <« M and u, — u for the modular
convergence in Ly (), then w, — u strongly in Ep(Q).
In particular, Ly (2) C Ep(Q2) and Lp(Q) C E(Q) with
continuous injections.

Proof 2.10: Let € > 0 be given. Let A > 0 be such that

AM(w,?)—)O, as n — oo.

Therefore, there exists h € L'({2) such that

M(a:, _U)Shandun%ua.e.inﬂ

for a sub-sequence still denoted (uy,). Since P < M, then for
all » > 0 there exists tg > 0 such that
P(z,rt)

M D) <1, a.e.in Q and for all ¢ > t;.

Forr:%andtzg,weget

’

Pz,

;,) <1, when t' > toA.
M(ZE’ X)
Then
P(m, w) < M(x, I ) + sup esssup P(z,t'/e)
€ A t'eB(0,toA) TEN
<h+ sup esssupP(z,t'/e) for a. a. z € Q.
t€B(0,tg) zE€Q

Since h + Supy ¢ p(o,11) €38 SUPLcq P(T, %) € LY(Q) (from
Remark 2.7), it yields, by the Lebesgue dominated conver-
gence theorem,

Up —

P(Jc, u) — 0 in L'(),
hence, for n big enough, we have ||u,, — u||pq < e. That is,
Up — u in Lp(9).

The continuous injection L () C Ep(Q) is trivial since
the convergence in Ly (2) implies the modular convergence
in this space. On the other hand, since P < M is equivalent
to M < P, this yields the continuous injection Lp(Q) C
Eg;(Q).

Lemma 2.11: (Lemma 2.2 in [30]) Let (w,) C L (),
w € Lp(Q), (vp) C Liz(Q) and v € Ly (). If wy, — w in
Ly () for the modular convergence and v, — v in L;(Q)
for the modular convergence, then
lim Wp Uy dx = / wv dz.

Lemma 2.12: Let (uy,) C Ep () with w,, — w in Epf(Q).
Then there exist h € L£37(£2) and a subsequence (u,/) such
that (a. e. stands for ‘almost everywhere’)

wpvdr = / wvdz and lim
Q Q

n—oo

|un ()| < h(x) a.e.in 2, and wu, — u(x) a. e.in Q.

Proof 2.13: If u,, = u for some subsequence (u.,), then
the result is trivial. Thus, we may assume that for n > 1 large
enough (and some subsequence, if necessary, still denoted in
the same way) it is 0 < 2[|u,, — ul|(asy < 1. Then

Up — U
a2t =~ )20 = [ Mo (20— oy )
W O Mlun —ul oy

Upy — U
<2||up —u Myl ——m———
<2l —ullan [ M ()

<2[|uy, — “”(M)-

Thus, || M (2(un — u)||z1() —+ 0, as n — oo. Therefore
there exists hy € L'(2) and a subsequence (u,/) such that
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Upr — u(z) a. e, in Q and M, (2(un (z) — u(x)) < hy(z)
a. e. in ), which implies that

e < Ju(e)| + M5 () 2 ().
Since
1. 1
[ 8t ()l + 33 @) < 5 [ Mu)

1
—1—2 ;

we finally obtain i € L/(€2).
Lemma 2.14: (Cf. [4]) Let € be a bounded and Lipschitz-
continuous domain in R? and let M and M be two comple-
mentary Musielak-Orlicz functions in €2 x R which satisfy the

following conditions:

(i) There exists a constant A > 0 such that for all z,y € Q
with 0 < |2 — y| < £ one has

hl (.T) < 00,

M _
(2:9) o ~rfat forall s > 1. (13)
M(y,s)
(ii) There exists a constant C' > 0 such that
M(z,1) < C a.e.in Q. (14)

Then the space D(Q) is dense in Lj/(£2) with respect to the
modular convergence, D(2) is dense in WLy () for the
modular convergence and D(Q) is dense in WL (Q) for
the modular convergence.

Remark 2.15: By taking s = 1 in (13) it yields that
M(z,1) = constant for a. a. x € €. In particular, the
condition (8) is obviously verified and also

/M(x,l)dx<oo.
Q

Remark 2.16: (Cf. [9]) Let p: Q +— (1, 00) be a measurable
function such that there exists a constant A > 0 such that for
all points z,y € Q with |z —y| < 1/2, one has the inequality

A

log|z —y|’

Then the following Musielak-Orlicz functions satisfy the as-
sumption (13):

1) M(z,s) = sP®);

2) M(z,s) = sP® log(1l+ s);

3) M(xz,s) = slog(1+ s)(log(e — 1 + s))P(®),

Poincaré’s inequality does not hold in generalized Orlicz-
Sobolev spaces unless the Musielak-Orlicz function M(x, s)
verifies some structural assumption. To this end, we introduce
the following definition [3].

Definition 2.17: A generalized function M (z,s) is said

to satisfy the Y'-condition on a non-empty bounded interval
(a,b) C R, if either

Ip(z) —p(y)| <

there exist so > 0 and 1 < ¢ < N such that the function

x; € (a,b) — M (x,s) changes constantly its
monotony on both sides of sy (that is, for s > sq
and 0 < s < sp),

(Yo)

or
there exists 1 < ¢ < N such that for all s > 0,
the function z; € (a,b) — M(x,s)

is monotone on (a,b).

(Yeo)

Here, x; stands for the i-th component of x € ().

Lemma 2.18: (Poincaré’s inequality [3]) Let €2 be a bounded
and Lipschitz-continuous domain in R? and let M and M
be two complementary Musielak-Orlicz functions in 2 x R.
Assume that M verifies (13) and the Y -condition, and also that
M verifies (7) and (14). Then there exists a constant Cy =
Co (2, M) > 0 such that

||’U,||]y[’g < C()”VU”M’SZ, for all u € WolL]y[(Q) (15)

From this point on we will always assume that the hypoth-
esis of Lemma 2.18 hold true.

Remark 2.19: Let M be a Musielak-Orlicz function such
that (15) is verified and let u € W Ly (£2). Assume that, for
some constant C > 0, one has fQ M (z,Vu)dz < C. Then,
[lull1,0,0 < C" where C" = (Cp+1) max(C, 1). Indeed, since
[ulli,ar,0 = llullar,e + [IVullar,o. by using (15), we get

[ulli,ar.0 < CollVullara + [Vullara < (Co + 1)Vl a0
Now, if C' > 1, according to the convexity of M (z, -), it yields

Vu 1 C
- < — < — =
/QM(x, C)dmfc/ﬂM(x,Vu)d:cfc 1,

this means that C' € {\A > 0, [, M(z,Vu/A)dz < 1},
hence ||Vu|lpo < C. On the other hand, if C' < 1, then
Jo M(x,Vu)dz < C < 1, which yields ||[Vul[p,o < 1.

Inhomogeneous Musielak-Orlicz-Sobolev spaces. When
dealing with parabolic equations in the context of Musielak-
Orlicz-Sobolev spaces we need to introduce some particular
spaces which take into account the different orders of dif-
ferentiation with respect to the spatial variables and the time
variable.

Let ) be a bounded and open subset of R? and let Q7 =
Q% (0,T) for some T' > 0. Let M = M (z, s) be a Musielak-
Orlicz function in € x R (here we do not consider a more
general case where M = M (z,t,s), (z,t) € Qr). For each
a=(ag,...,aq) € 74, a; >0,j=1,...,d, we denote by
D¢ the distributional derivative on Q)r of multiindex « with
respect to the variable z € R?. The inhomogeneous Musielak-
Orlicz-Sobolev spaces of order one are defined as follows:

WY Lar(Qr) = {u € Ly(Qr) / DSu € Ly (Qr) for all o, |af <1}

and

WHEyn(Qr) = {u € Ep(Qr) / D2u € Epy(Qr) for all o, |af <1}

This last space is a subspace of the first one, and both are
Banach spaces under the assumption (8) and with norm

lull = > IDgullar,or-
o<1

These spaces are considered as subspaces of the product space
IIL 5 (Qr) which has (d+ 1) copies.
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We shall also consider the weak-x
topologies oMLy (Qr), NE7(QT)) and
O’(HLM(QT),HLM(QT)) If v € Wl’xLM(QT) then
the function ¢t :— w(t) is defined on (0,7) with values
in WLy (). If, further, v € WY Ey(Qr) then this
function is a W!E),(2)-valued and is strongly measurable.
The space W% Ly (Qr) is not in general separable. If
u € WHLy(Qr), we cannot conclude that the function
u(t) is measurable on (0,7"). However, the scalar function
t — |lu()|larq is in L'(0,T). The space Wy * Exr(Qr) is
defined as the (norm) closure in W% Ey (Qr) of D(Q). We
can easily show as in [4] that when (2 is a Lipschitz-continuous
domain then each element u of the closure of D(Qr) with
respect of the weak-x topology o(IIL,s, ITE,;) is limit, in
W2 Ly (Qr), of some subsequence (u,,) C D(Q7) for the
modular convergence; i. e., there exists A > 0 such that for
all o with |o| <1

Deu, — D2
/ M(%M)dxdt%Oasn — 00,
T

and, in particular, this implies that (u,) converges to u
in Wh Ly (Q7) for the weak-* topology o(IILas, IIL ).
Consequently

— o(IlLyp, 0L ;) ————o(IIL o JIE ;)

D(Qr) =D(Qr) :
This space will be denoted by W,** L (Qr). Furthermore,
Wo " Ex(Qr) = Wy Ly (Qr) N1 (Qr).

Poincaré’s inequality also holds in Wy *Lys(Qr), i. e. there
exists a constant C' > 0 such that for all u € WO1 TLav(Qr)
one has

> IDgullaer <C Y DSl aror-

| <1

(16)

lal=1

The dual space of Wol’zEM(QT) will be denoted by
W42 7 (Q7), and it can be shown that

W—l,mLM(QT> ={f= Z DS fo/ fa € Lip(Qr),

laf<1

for all a.
This space will be equipped with the usual quotient norm

£ = inf > DS fall it or

| <1

where the infimum is taken over all possible functions f, €
Ly;(Qr) from which the decomposition f = 3_, <1 D7 fa
holds true.

We also denote by W~L*E;(Qr) the subspace of
W42 L5 (Qr) consisting of those linear forms which are
o(I1L s, ILE ;)-continuous. It can be shown that

WY EG(@Qr) =3 f= Y Difa/fa € Ex(Qr)

laf<1

III. Compactness results

In the sequel, we will make use of the following results
which concern mollification with respect to time and space
variables and some trace results. For a function u € L*(Qr)
we introduce the function @ € L'(Q x R) as i(x,s) =
u(z,s)x(o,r) and define, for all 4 > 0, ¢t € [0,7] and
a.e. T € (), the function u,, given as follows

uy(z,t) = ,u/_ a(zx, s)exp(pu(s —t)) ds. (17

Lemma 3.1: ( [2]).

1) Let u € LN[(QT). Then Uy € C([07T],LA4(Q)) and
u, — uwas g — +oo in Ly (Qr) for the modular
convergence.

2) Let u S WY La(Qr).  Then  wy, €
C(0,T; W Ly () and u, — w as u — +oo
in W% L/ (Qr) for the modular convergence.

3) Let u € En(Qr) (respectively, u € WL Ep (Qr)).
Then w, — u as p — +oo strongly in Ej(Qr)
(respectively, strongly in W% Ey (Q7)).

4) Let u € WH*Ly(Qr) then Bgt“ = plu —u,) €
WI’QJLM(QT).

5) Let (Un) C W1’$L1u<QT) and u € W1’$L1M<QT) such
that u,, — wu strongly in WYL (Qr) (respectively,
for the modular convergence). Then, for all © > 0,
(tn)y — w,, strongly in WhHT Ly (Qr) (respectively,
for the modular convergence).

Lemma 3.2: [2] Let M be a Musielak function. Let Y be

a Banach space such that the following continuous imbedding
holds L'(Q) C Y. Then, for all € > 0 and all A > 0 there is
C. such that for all uw € W' Ly (Qr) with ¥ € Ky (Qr)

vu

full sy < X[ Ma,S2) dodt+T) 4+ Collullio oy
Qr

(18)

Lemma 3.3: [2] Let Y be a Banach space such that
L'(Q) C Y with continuous imbedding.
If F' is bounded in Wol’xL M (@) and is relatively compact
in L'(0,T;Y) then F is relatively compact in L*(Qr).

Lemma 3.4: (cf. [33]) Let Qr = Q x (0,T), let M a
Musielak-Orlicz function, Fj;(2) the Musielak-Orliccz space
on Q and Fj;(Qr) the inhomogeneous Musielak-Orlicz space
on Qp. Then there embeddings map

En(Qr) € LY0,T; Ex(9)). (19)

Lemma 3.5: Let Qr = Qx (0,T), let M a Musielak-Orlicz
function, W' E/(2) the Musielak-Orliccz-Sobolev space on
Q and W'Ej(Qr) the inhomogeneous Musielak-Orlicz-
Sobolev space on Q7. Then the following embeddings

W'Ey(Qr) C L' (0,T; W' En () (20)
W B (Qr) € L' ((0,7); W Eg()) (1)

are continuous
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Proof 3.6: Let u € W'Ey (Q7)), we have u € Ep(Qr)
and D%u € Ep(Qr). By the previous lemma, we get

T
/ lallarg df < (T + Dllullarn, @2)
0

and

T
/ ID%ullar dt < (T + 1)||D%ul a1, for all o] < 1,
0

(23)
which implies

T
/ ull Lo, rwi Er (o) dt < (T + D|ullwiepgr- 24)
0

Consequently (20) is proved.
Using the same Technics we will prove (21). Since every f €
W17 E7(Qr) reads as

f=">" Do where g, € Eq7(Qr)

[a|<1
and

Ifllw=rer @) = Y 19allaz.00
jal<1

This gives

T
|3 laelga < 0+ Dl

laf<1

by definition of the quotient norm of W ! L1(Q2) we have

[fFO w11 < Z 90 () 137,05

laf<1

and then

T
/0 Ol L@t < (T + D fllw-1e 1 (n)-

This gives the desired result.

Theorem 3.7: [2] Let M be a Musielak function. If F
is bounded in Wy'*Lar(Qr) and 2L : f € F is bounded in
W17 L+(Qr), then F is relatively compact in L1(Q).

Lemma 3.8: [40] Let B be a Banach space.

If f € D' (J0,7[;B) is such that &L € L'(0,7;B) then
f € C(J0,T;B) and for all A > 0 we have ||7,(f) —
fllerors) < WG L 0 1:m):

Remark 3.9: By the Theorem 3.4, if F' C L'(0,T; B) is
such that i%{ : fe€F; is bounded in L'(0,T;B) then
[T (f) = fllzr(0,r;8) — 0 as h — 0 uniformly with respect
to feF.

Corollary 3.10: Let M be a Musielak-Orlicz function. Let
(un) be a sequence of WH* L/ (Qr) such that

u, —u weakly in WLy (Qr) for o(IILy, TE;)

and 5
ﬂ — hn + kn

ot in D (Qr)

with (h,,) bounded in W1 L17(Qr) and (k,) bounded in
the space L'(Qr) of measures on Q7. Then

u, — u strongly in L (Qr).

If further u,, € Wy Las(Qr) then u, — u in LY(Q7).

Proof 3.11: The proof is easily adapted from that given in
[12] by using Theorem 3.7 and Remark 3.9 instead of lemma
[40].

IV. Existence result

Let ) be a bounded Lipschitz domain in RY (N > 2), T >
0 and set Qr = Q x [0, T]. We denote Q, = Qx [0, 7]. Let M
and P two Musielak-Orlicz functions such that P < M and
their conjugate respectively M and P satisfy (9) and (10).
Consider a second-order partial differential operator

A: D(A) C WLy (Qr) —» WLz (Qr)
in divergence form
A(u) = —div(a(z, t,u, Vu))
where

a: QxRxRY — R¥is a Carathéodory function satisfying
(25
for almost every (x,t) € Qr and all s € R, ¢ # ¢ € RY

la(,t,5,6)| < Bler(a, )+ M, Pla, ka|s|+3, M(x, ki [€])

) ) (26)
[a(x,t,s, E) - a(x,t, S5, f )][g - 5} >0 (27)
a(z,t,s, §)€ = a[M(z,[s]) + M(z, [£])] (28)

with ¢1(z,t) € Eqp(Qr), c(z,t) >0 and «, 5,k > 0.
The function ¢ is a Carathéodory function satisfing the fol-
lowing conditions

|B(2,t,5)| < v(w, )P, P(x, |s]), (29)

with v € L>(Qr)
feLY(Qr) (30)
ug € LY(Q). 31)

Lemma 4.1: Under assumptions (25)- (28), let (z,) be a
sequence in VVO1 " Lar(Qr) such that,

(i) 2n — z in Wy Lar(Qr) for o(ITLa(Qr), I Eyp)
(i) (a(x,t,2n, V2z,))n is bounded in (Lp (Qr))Y
(4i1) [a(z,t, zn, Vz,) —

Qr
— 0.

(32)
as n and s tend to co, and where  is the characteristic function
of

Qs = {(z,1) € Qr; |V2| < s}

Then,

Vzp, = Vz ae. in Qr, (33)
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lim la(z,t, zn, Vzn)Vz, dox dt = / [a(z,t,2,Vz)Vz dx dt
(34)
M(x,|Vz,|) = M(x,|Vz|) strongly in L'(Qr)  (35)

Proof 4.2: We proceed as in the case of Orlicz spaces (see
[1]), we get the desired result.

V. DEFINITION OF AN ENTROPY SOLUTION.

The definition of an entropy solution for problem (1) can
be stated as follows.

Definition 5.1:

A measurable function u : @ x (0,7) — R is called
entropy solution of (1) if u belongs to L>(0,T;L(Q)),
Tk (u) belongs to D(A) N Wy " Ly (Qr) for every K > 0,
Ok (u(.,t)) belongs to LY(Q) for every t € [0,T] and for
every K > 0 and u satisfies :

ov

/Q@K(u —v)dx + <8t’TK(u —v))q.

+/ a(x,t, Tk (u), Vg (u)) VT (u —v) dr dt
7 (36)
+/ O(x,t,u)VTx(u—v) dr dt

< 7 fTr(u—v)de dt+ /Q Ok (up — v(0))dz,

-

and

u(x,0) = ug(x) forae x€Q, (37)

for every 7 € [0,7], K > 0 and for all v € Wy Ly (Qr) N
L>=(Qr) such that 22 belongs to W~ Liz(Qr) + L*(Qr)

(recall that @k (r) =

truncation T'x).

This section is devoted to establish the following existence
theorem

Theorem 5.2: Assume that the hypotheses (25)-(29) are
satisfied, then there exists at least one solution of problem
(1) in the sens of Definition (36).

Proof 5.3:

T (r)dr is the primitive of the usual

Stepl : Approximation problem.

Let f, and wg, regular functions in L'(Qr) (resp L'(£2))
such that:
fo— fin LNQr) and [|follrr < [ fllr (38)
and
[won|lrr < [Juollr and wg, — ug in L*(Q),  (39)

as n tends to +oo.
Now, we consider the following regularized problem

861;; —div (CL(.’E, t, U, vun)) - diV(q)(J), t, un)) = fnin Qr

Un(x,0) = upp(z) in Q
Up =0 on 90 x (0,7),

The problem (40) can be written as follows

% - diV(Fn({E,t,un,V’un)) = fn in QT
un($70) = U()n<$) in
Up = 0 on Of) X <O’T),

with F,, (2, t, un, Vuy,) = a(z, t, un, Vi) + (P(z, t, up).
Note that F,, satisfies the assumptions (A4;), (A2) and (A3)
as in [27].

Indeed, using (26), (27)and (29) we deduce that F), satisfies
(A1), (Ay), it remains to prove (As). Let u, € W L (Qr)
by (29) and Young inequality we obtain

@ (2, 8, un) Vun| < |y(z, (P2, [un|) + Pz, [Vun]))
< Cy(P(, [un]) + P(z, [Vunl)).

(41)

(42)
P < M, then we have for all € > 0 there exists ¢y that

P(z,t) < M(x,et) for all t > tg, a.e.x € Q. (43)

Let
By = {(a:,t) € Qr; |un(x,t)| > tO}

and F5 = {($7t) € QT; |Vun(x7t)| > to}

Case 1:if (z,t) € By N Ey
In virtue of (42) and (43), we have

[P (2,1, un)Vuy| < Cy(M(z,e|lun|) + M(z,|Vu,|)). (44)

Without loss of generality, we can assume that ¢ = ﬁ
which is ¢ < 1, then by convexity of the function M (z,.),
one has

|®(z,t, un)Vu,| < Cre(M(z, |up|) + M(z,|Vu,)|))
< F(M(z, lun]) + M(z,[Vun|)),

45)
which implies
Dz, t, ) Vg > —%(M(:c, lun|) + M(z, |Vun).  (46)
From (28) and (46), we have
Fo(@,tun, Vi)V > S M (@, Vo)) @7)
Case 2 : if (z,t) € E{N ES
We have
|®(z,t, up)Vu,| < Cy(P(x, [un]) + P(z,|Vu,l)) (48)
Using the Remark 2.7, we obtain
P(z,|un|) < esssup P(x,tg) < Ry < 00 (49)
e
and
(50)

P(z,|Vuy|) < esssup P(z,ty) < Ry < o0.
e
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From (49) and (50) we get the primitive of the truncated function Tk (s).
Taking v = T (Un)y(0,r) as test function in the equation (40)
|P (2,1, up) Vug| < Co. (51)  we obtain
By (28) and (51) we deduce
y (28) and 1) / O (un)(7)dx _/ O (ton)dz
Q Q
. n > ) n|)
F,(z,t, un, Vuy).Vu, > aM(z,|Vu,|) — Co (52) +/ 0 st Vi) VT () da
Case 3 :if (z,t) € Ef N Es. 7 B(o.t — e dt (59)
In this case, by using Remark 2.7 and (43) we get : + (@, 8 un) VT (un) dz
:f [Tk (un) dz dt,
|D(z,t, un)Vu,| < C1 + CyM(z,7|Vu,)). (53) -
We can assume again that r = 5z°— which is r < 1, then since VTk(un,) = 0 in set {(x,t) € Qr; |un(z,t)] > K}
by convexity of the function M (z,.), one has which implies that
a
O(@, b, un)Vun 2 —5 M(2, [Vug|) = C1. O (un)(7)da +/ a(z, t, T (un), VT (un)) VT (un) da dt
Q .
which implies by using (27) +/ ®(x,t, Tr (un)) VT (un) da dt
Qr
«
Fo(@,tyun, Vun) Vun 2 S M(x,[Vun|) + aM(z, Jun) = C1 - _ FuTic () d dt+/ Ok (1o )dv.
> S M@, Vua)) — Cu. s @ . (60)

First, from (38) and (39) we have
By the same way if (z,t) € E1 N ES we get

Pt V0V > Aol + oo V) Ca. [ FiTi(0) e [ Ouc(unn)de < K(1flh gy +unla ) = €6
> aM(z, |[Vun|) — Co. G5 (61)

where Cy = (|| f]|21(Qr) + [|uol|L: (@)
Moreover, by the Young’s inequality and the fact that v €
Finally, from (47), (52) and (54) the assumption (A3) in L>(Qr) we have
[27] is true.
Then there exists at least one solution u, of (40), (the
<
existence of wu, can be obtained from Galerkin solutions ) (@, £, T (un)) VT (un) do dt < C, 0. P(a, |Txc (un)]) dv dt
corresponding to the equation (40) as in [27], see Theorem
1 of [2] for more details). + G 0. Pz, VT (un)) du
(62)

where Cy = |[7][ = (Qr)-
From the Remark 2.7 and (43)we therefore get

Step 2: A priori estimates.

Lemma 5.4: Suppose that the assumptions (25) - (29) are / (z, Tk (up)) dx dt :/ P(x, Tk (uy,)) dz dt
true and let u,, be a solution of the approximate problem (40). {(@,t)€Qr;| Tk (un)|<to}
Then for all K,n > 0, we have P(x, Tk (uy)) dx dt

(2,t)€Q 3| Tk (un)|>to}
esssup P(z, |to]) dx dt
{(

M(z,|VTk (uy)|) de dt < CK. (56)
z,t)€EQ ;| Tk (un)|<to} TEQ

Qr

IN

_|_

Where C is a positive constant independent of n and K. M (z, e|Tk (un)]) dz dt

/It €Q;|T un)|>t
And {(=.t) I Tk ( o}

< Ry / M{(z, | T (uy)]) da dt.
Klim mes{(z,t) € Qr;|un| > K} = 0. (57) (63)
e Using the same technics as above, one has

Proof 5.5: Let us note that in the following of this work we

will set / Pz, |VTw (un)]) dz dt < Rat | M(z,e|VTx(up)]) dz dt.

t
Ok (t) = /0 T (s)ds (58) 79 o (64)
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Hence

/ (e, t, Tic () )V T (1) da dt

-

<Cy(Ry+ RO+ Cy [ Ml elTi(u)]) dodt (69)
Qr
+07/ M(z, |V Tk (uy)]) da dt,
Qr
where R3 and R, are constants not depending on K and n.

By choosing € = and convexity of the function M we
get

o
20, +a

/ O(x,t, T (un))VTk (uy,) do dt

.

< Cy(R3+ R4) + S/Q Mz, |Tk (uy,)|) dx dt (66)
+‘;/Q M (z, |VTK(un;|) dzx dt.
From (28), 7(61) and (66) we deduce that
M(z,|VTk (uy)|) de dt < CK for K > 1.

Q-

Where C' is a positive constant independent of K and n.
We prove (57 ). Indeed, it result from (28) and (67) that

(67)

CK
€
Let tending K to infinity. We deduce:
lim meas{(z,t) € Qr;|u,| > K} =0. (69)
K—oo

Then we conclude that there exists

Wy Lpr(Qr) such that

some vg €

Tx (up) — vk weakly in Wy " Lar(Qr) for o(I1Lyy, TTE;)

(70)
Let € > 0, since (57), (70) and the fact Tk (u,,) is a Cauchy
sequence in measure, there exists some K. > 0 such that
meas{(z,t) € Qr;|un — um| > A} for all n,m > Ny(K, A).
This proves that (u,), is a Cauchy sequence in measure in
Q7 thus converges almost everywhere to some measurable
function u.
We conclude that there exists some u € W, Ly (Qr) such
that

T (un) = Tx(u) weakly in Wy " L (Qr)

for o(I1L ar, 11 E7;)

Next, if we multiply the approximation equation (40) by
0, (t), where () is a C2(R nondecreasing function such
that O (t) = ¢ for |t| < & and O (t) = K for [t| > K, we
obtain

(71)

% = div (a(a:,t,un, Vun)ﬁ;c(un))
- a(x, t, Unp, vun)gg(un)vun

+div (9§€(QL,L)<I>(x7 t, un))
—®(z,t,un)0} (un)Vu, + [ (un),

(72)

in the sense of distributions.

Due to(26) and the fact that Tk (u,) is bounded in
Wy Lar(Qr), the term

-div (a(m,tun, Vun)HIK(un)> + a(x, t, Uy, Vun)Q;;(un) +
fnb(uy) is bounded in W' L1+(Qr). Furthermore, we have
supp(@lK) and supp(@}/{) are both in [— K, K], which gives

| [ O (un)®(a, b, up) Vi, da dt|
Qr

<105 / 1B £, Tic ()| T ()| iz i,
Qr

by (29), v € L*>(Qr) and the Young’s inequality it follows
that

[ )@t un) Y da ] < 65l Il
T

x[ P(z, |VTx (un)]) dz dt+/
Qr

Qr

73
By applying the same Technics as in the proof of Lemma (5.4),
we prove that 9;’((%)@(3:, t,up, )V, is bounded in L*(Qr).
In the same way, we show that div(6; (u,)®(z,t, un)) is
bounded in W% L (Qr).
Hence all bove implies that

89k (un)

ot
Proceeding as in [35] and using Corollary 3.10, we easily show
that there exists a mesurable function u € L>(0,7; L*(Q))
such that for every K > 0

is bounded in WM L(Qp) + LY (Qp. (74)

Tr (un) — Ti(u) weakly in WLy (Qr) for o(II Ly, I E5p)

(75)
and
Tk (un) — Tp(u) strongly in L'(Qr) and aein Qr
(76)
Now, we prove the following lemma
Lemma 5.6: Let u, be a solution of the approximate
problem (40), then for all K > 0,

(a(w, t, T (tn), VTK(un))) is bounded in (Ly7(Q7))Y.
! (77)
Proof 5.7: Let ¢ € (Ep(Q7))N be arbitrary. In view of
the monotonicity of a, one easily has

(a(aj,t, U, Vun) — a(m,t,un, @)) (Vun — <p> > 0. (78)

Hence

/ a(x, t, Uy, Vun)go dx dt (79)
{lun| <K}

/ a(w, t, Un, Vun)Vun dx dt
{lun| <K}

! /{ungK} a(x’ b, 90) (‘P - Vun) dzx dt.

IN
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Using (26) and since Tk (uy,) is bounded in WOI’ILM(QT), as n tends to +oo.

one easily deduces that Let us consider the function h,, defined on R by:
1 if |s| <m
T (1), VT (un) ) VT () da b < CKy. . =
/Ta(a? i< (un), VT (tn) < (un) dz ! hm(s) —|s|+m+1 if m<|s|]<m+1
(80) 0 if [s|>m+1,
Combining the fact that T (u,,) is bounded in Wol’xLM (Qr),
(79) and (80), we get for any m > K.
Using the admissible test function ¢, = = (Tk(un) —
/ a(w,t,TK(un), VTK(un))go dr dt < CK,.  (81) Wi ;)hm(us) as test function in (40) leads to
T
Oy i
Hence, thanks the Banach-Steinhaus Theorem, the sequence ( 8tLaSD£L:;,m> + / a(z,t, Un, V) (89)
T

(a(ax,t,TK(un), VTK(un))) is a bounded in (Li7(Q7))V.
thus up to a sub-sequence "

a(x,t,TK(un),VTK(un)) ~ g in (I(Qr)Y  (82) +/ a(@, £,y V) (T () — W) Vunhl,, (uy) da dt

for o(I1Lg7, I1Ey), for some Ik € (Ly(Qr))N
Step 3 : Mudular convergence of the gradient. +/{ o }‘I’(xata Un)vunhlm(un)(TK(Un)*w'ﬁj) dx dt
m<|u,|<m-+1

X (VT (un) — Vwi' ;) i (u,) da dt.

O(x,t, Uup ) hm (un) (VT (uy) — Vwt'.) do dt
This step is devoted to introduce for K > 0 fixed, a time +/ - (@8, un) R (1) (VT i () Wij ) dz

regularization w;, ; of the function T (u).
We first 1ntroduce two smooth sequences namely, (v;) C = fn‘PZ:;m dx dt.
D(Qr) such that v; — u in W™ Ly (Qr) for the modular Qr
convergence and almost everywhere in Qr, and (¢;) C D(Q) Denoting by €(n, 7, i, i) any quantity such that,
which converges strongly to uo in L?(©2) and such that
1Vill 2 () < 2lluollz2(q), for all 4 > 1. For a fixed positive
real number K, we consider the truncation function at height o
K, Tk Then, for every K,p >0 and 4,5 € N, we introduce By the definition of the sequence w; ;,
the function w;, ; € Wy ) m(Qr) (to 51mp11fy the notation, ~following lemma. p
we drop out the index K) defined as w? . = Tx(v;), + Lemma 5.9: Let ‘Prum = (T (un) —wy ;)i (un ), we have

lim lim lim lim e(n,j,u, ) = 0.
i—00 —+00 j—+00 N—00

# . we can establish the

7]

e MTy (1;), where Tk (v;), is the mollification with respect for any K > 0:

to time of Tk (v;) given in (17). From Lemma (3.1), we know Ouy, - .

that ! (g Phigm) = €, o o), (90)
ow, ; i ; where denotes the duality pairing between L' +
Tk = (i) ), iy, 0) = Tie(w), | < KRS, ) e (@)

WL L(Qr) and L®(Qr) N Wy " L (Qr).
Proof 5.10: Using the same techniques as in Orlicz space
(see [6]), we can easily get the result.
P wz def Ty (u), + e M Ty (1) in Wol’xLM(QT), Now, we turn to complete the proof of Proposition 5.8., we
(84) Dprove below the following results for any fixed K > 0.

(83)
a.e in Qr,

for the modular convergence as j — oo.

_ . . fngon mdxdt =e(n,j, ). 91)
T (W) + e " Tic (i) = T (u) in Wy Lar(Qr),  (85) Qr
for the modular convergence as p — o0.
We will establish the following proposition. / O (z,t, Un)hm(un)(VTK(un)—waj) dr dt = e(n, j, 1),
Proposition 5.8: Let u, be a solution of the approximate T ’ ©2)

problem (25)-(29). Then, for any K > 0 :

Vu, — Vu ae.in Qr, (86) , \
/ D(x,t, un)Vunhm(un)(TK(un)—wf_j) de dt =e(n,j,pu
a(xvthK(un)»VTK(un)) - a<xat7TK(u)7VTK(u)) {m<fun|<m+1} l (93)
387)

weakly in (L77(Qr))",

M i) > MOTT() sy i £3Qu). 00 o) Vo) i)t e de < o)
(88) (94)
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/Q [a (:v, t, Tk (un), VTK(Un)) —a(m, t, T (un), VTK(U)XS)} Hence

95)
X {VTK(un) - VTK(U)X5:| de dt <e(n,j,p,m,s).

Proof of (91) : By the almost everywhere convergence of

Up, we have (T (uy) — Wt )y, (uy,) converges to (Tk (u) —

2]

w! VA (u) in L°(Qr) weak-* and then,

Z!j
F(Tx (un) — wi' ) hm (uy) da dt
Qr
— f(Tr (u) = wi ;) hp (u) do dt.

Qr
So that,
(T (w) = Wi o (u) = (T (w) = T ()0 — e~ T (7))
in L>°(Qr) weak-* as j — oo, and also

(T (u) = Tre(u) — e " T (¥5)) — 0
in L*>°(Qr) weak-* as y1 — +o0o. Then, we deduce that,

o fn(T (un) — wéfj)hm(un) dz dt = e(n, j, j1).

Proof of (92) and (93): For n large enough, we have

@((E, ta un)hm(un) = (I)(xa tv Tm+1(un))hm(Tm+1<un))
o7

(96)

aein Q.

In order to prove (92) and (93), we will apply Lemma 2.9,
Let remark that P < M < M < P (see [25]). Thus
we need only to show that ®(x,¢,T;,41(uyn)) converge to
D(x,t, Tyt1(u)) with respect to the modular convergence in
(L5(Q7))Y to get the desired result.

Indeed, we put
P x, O(w,t Tm+1(uﬂ)) P (z,t, Tm1(u))

M,, =
). we have that @ is

a Carathéodory funct10n and using the pointwise convergence
of u, we get that ®(z,t, Tny1(un)) = @(2,t, Tinyp1(u)) ae
in Qr as n — oo, then since P(0) = 0, one has
O(z,t, Tt (un)) — ®(z, t, Tm+1(u)))
I

M, = P(az, 0,

(98)
a.ein Qp as n — oo.
By the convexity of P, for 1 and n large enough and by
(29), we obtain

F( (p(mvtaTerl(un))/;q>($vt’Tm+l(u)))
- —1
P, P, P, [T (un)])])

%P, P, P, | Ty (w))))
Lesssup,eq P(x,m+1) = Cp, ae. in Q7.

E

99)

IN 4+ IA
““;Lt

m

By Remark 2.7 we have C,, € L'(Qr). Then, using (98),
(99) and by Lebesgue’s dominated convergence theorem, we
obtain

M, dx — 0
Qr

as n goes to infinity. (100)

(I)(Z'ytaT7n+1(un)) — (I)(z7t7Tm+1(u)) (101)

with repect to the modular convergence in L5(Q7) as n —
~+00. By appling Lemma 2.9. we obtain ®(x, t, Tp,41(un)) —
(@, t, T (1) in (By(Qr))Y

Then by virtue of, VIk(u,) — VTk(u) weakly in
(Lar(@r))™, then

/ D (2, t, un) o () (VTk (1) — Vwk! ) dx dt
T (102)
— D(x, t, u)h, (u) (VT (u) — Vw!
Qr
as n — +oo.
In the other hand, by using the modular convergence of wf f
as j — o0 and letting p tends to infinity, we get (92).
Now we turn to prove (93).
First, remark for n > m + 1 we have that

Vunh,, () = Vi1 ()

;) dx dt

aein Qr. (103)

By the almost everywhere convergence of U,, wWe have
(Tx (un) — wy';) converges to (T (u) — wy';) in L=(Qr)
weak-* and since the sequence (®(z,t Tm+1(un)))n con-

verges strongly in E57(Qr) then,
(2, £, Tong1 (un)) (T (un) =i ;) = (2,8, T (w)) (T ()

converges strongly in Fy7(Q7) as n goes to +oo.
Using again the fact that, VT, 1(u,) — VT41(u)
weakly in (Lp(Qr))Y as n tends to +0o we obtain

—wy;)

/ O (z, b, un ) Vunh,, (un)(Tk (tn) — wy ;) dv dt
{m<|un|<m—+1} ’
— O(x,t,u)Vu(Tk (u) —

wy' ;) de dt,
{m<|u|<m+1}

(104)
as n tends to +o0.
By using the modular convergence of wf j
letting 4 tends to infinity, we get (93).
Proof of (94): Concerning the third term of the right hand
side of (89) we obtain that

/ a(z, t, un, Vun)Vuyhl (un) (T (un)—
{m<|un,|<m+1}

as j — +oo and

wy';) da dt

(105)

< 2K/ a(z, t,un, Vun)Vu, do dt.
m<|uy,|<m+1}

Then by (77). we deduce that,

/ a(@, t, up, V) Vg by, (un) (T (un) —w}' ;) da dt
{m<|un | <m+1} ’

(106)
< €(n, u, m). which is the desired results.
Proof of (95): By means of (89)-(94), we obtain

/ a(@, t, up, Vun ) (VTk (un) =V wy ) i (uy) do dt < e(n, p, m).
’ (107)
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Using the same techniques as [24], we obtain

lim lim
5—00 N—> 00

o [a (:E, t, Tk (un), VTk (un))

—a(m,t,TK(un),VTK(u)xs)} (108)

x [VTK(un) - VTK(u)XS] dz dt = 0.

This implies by the Lemma 4.1., the desired statement and
hence the proof of Proposition 5.8. is achieved.
Step 4 : Passing to the limit
Let v € Wh2 Ly (Qr) N L* such that % belongs to
W% L+(Qr) + LY (Q7), there exists a prolongation v = v
on Qr, v € WHeLy (2 x R)NLY(Q x R)NL®(Q x R), and
Ov

S €W Lr L (Q x R) + LY(Q x R).

There exists also a sequence (w;) C D(2 x R) such that

wj =T in Wy Ly (Q x R), and

109
%i 59 in WoLTL(Q x R) + LY(Q x R). (109

for the modular convergence and ||wj|lco,0r <
2)|v||oo,0r (see [2]).

Now, let us take Tk (un — wj)xq
(40), thus for every 7 € [0, T, we get

(N +

as a test function in

ouy,

(5 Tr(un — wj))a,

+/ a(z,t, Tg(un), VI (un)) VT (un — wj) do dt

+/Q O(x,t, Tr(un))VTg (Uy — wj) da dt

= f foTk (uy — wj) da dt,
- (110)

where K = K + C||v]|oo,@,» Which implies
ouy,

(7,TK(un —wi))e-

+/ a(z,t, Tz (un), Vg (un)) Vuy, de
QrN{|un—w;|<K}

- a(z,t, Tz (un), VIg(u,))Vw; d

QrN{|un—w;|<K}

+ / O(x,t, Ty (un)) VT (un

.

w;) dx dt

(111)
By Fatou’s lemma and the fact that

a(z,t, Tg(un), VI (un)) = a(z, t, Tg(u), VI (u))

weakly in (L77(Qr))N for o(IIL57, IIEy), one easily sees

that

/ a(z,t, Ty (un), VIg(un))Vuy, dr
Qr N {[un—w;| <K}

— a(zr,t, T (u
Q,.ﬁ{|un—wj <K}

> a(z,t, Tz (u), VIg(u))Vu dv
Q- {lu—w;|<K}
- a(z,t, Tz (u), VIg(u))Vw; d.
QrN{lu—w;|<K}
(112)

As in (98), we obtain ®(z,t, Tz (un)) — ®(z,t, T (u))
in E57(Qr) as n — 400 and using the fact that VTx (u,, —
w;) = VTg(u—w;) in Ly (Qr), as n — +00, we can easy
see that

n)s Vg (un))Vw; dz

/ (2, t, T (1)) Vi (g — ;) d d

.

— O(x,t, Tr(u)) Vg (u — w;) dx dt.

s (113)

Since Tk (un — wj) = Tx(u —w;) weakly* in L™ as n —
+o00, we have

fnTr (up — wj) de dt —
Qr Qr

[Tk (v —w,) dx dt.

Turn now to see the first term of (110),

ouy,

<W7TK(u /6[( —OJJ
, T (U )>QT
—f@K(uno—wj( 0))dz.
¢ (114)

First, let see that u, — u in C([0,T]; L*(2)) (see [19]).
Moreover, since O (u, — w;)(7) < Kl|uy ()| + Klw;(T)],
we have by Lebesgue Theorem

/Q@K(un—wj)(T)da:—>/QGK(u—wj)(T)dx,

as n — +oo. Then, we can pass to the limit in (114) as
n — +oo0 we obtain

lim (% Tic(un —wi))e, = | Ocu=w)ds
(% Tre(u— wj))aq,
—f@K(’U,Q—UJj(O))d.’E.
° (115)

Now, let n goes to infinity in (110), we get
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aUJj
/Q@K(u —wj)dx + (W
+

/ a(z, t,u, Vu)VTk (v — w;) dz dt

T

Tk (u—wj))e,

+/ O(z,t,u)VIg(u—w;) dr dt (116)

< fTr(u—w;) dx dt
Q.

+/Q@K(U07w](0))dl’

By (109), as j tends to +0o we have

Moreover, for every 7 €

Oow; ov
aftj,TK(u —w)la. = (5 Tr(u—v))q,.

(

[0,T], we have |lw; —

v(7)||lL1() — 0 as j — +oo. Therefore, we pass now to
the limit as j — +o0 in (116), we get

v

/Q@K(u —v)dz + <6t Tr(u—v))g,

—|—/ a(z,t,u, Vu)VTk (u —v) dz dt

. (117)

—|—/ O(z,t,u)VTk(u—v) do dt

< fTk(u—v) dx dt+/

-

Ok (up — v(0))dx.

Qr Q

The proof of Theorem 5.2 is complete.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

(10]

(1]

REFERENCES

L. Aharouch, E. Azroul and M. Rhoudaf,Existence of solutions for
unilateral problems in LI involving lower order terms in divergence
form in Orlicz spaces. J. Appl. Anal. 13 (2007),n0.151-181.

M. L. Ahmed Oubeid, A. Benkirane, and M. Sidi El Vally, Strongly
Nonlinear Parabolic Problems in Musielak-Orlicz-Sobolev Spaces , V.
33 1 (2015): pp 193-225.

Y. Ahmida and A. Youssfi, Poincar-type inequalities in Musielak Spaces.
Annales Academiz Scientiarum Fennicee Mathematica, 44, (2019) 1041-
1054.

Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi, Gossez’s approxima-
tion theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal. 275
9), (2018) 2538-2571.

M. Ait khellou; Sur certains problmes non linaires elliptiques dans les
espaces de Musielak-Orlicz.These (2015).

E. Azroul, H. Redwane and M. Rhoudaf; Existence of a renormalized
solution for a class of nonlinear parabolic equations in Orlicz Spaces.
Port. Math. 66, no. 1, 29-63, (2009).

A. Benkirane and A. Elmahi. An existence theorem for a strongly non-
linear elliptic problem in Orlicz spaces. Nonlinear Anal., 36(1, Ser. A
Theory Methods):11-24, 1999.

A. Benkirane and M. Sidi El Vally (Ould Mohamedhen Val): Some
approximation properties in Musielak-Orlicz-Sobolev spaces, Thai.J.
Math., Vol. 10, N2, pp. 371-381 (2012).

A. Benkirane and M. Sidi El Vally (Ould Mohamedhen val): Variational
inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc.
Simon Stevin. Vol. 21, N 5, pp. 787-811 (2014).

A. Benkirane, J. Douieb, and M. Ould Mohamedhen Val. An approx-
imation theorem in Musielak-Orlicz-Sobolev spaces. Comment. Math.,
51(1):109-120, 2011.

P. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre and J.-
L. Vazquez, An L'-theory of existence and uniqueness of solutions of
nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, (1995),
241-273.

IJOA ©2021

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[34]

[35]

[36]
[37]

(38]

L. Boccardo and F. Murat, almost everywhere convergence of the
gradients of solution to elliptic and parabolic equations, Nonlenear
Analysis,Theory, Methods and Applications, Vol. 19, No. 6. pp. 581-
597, 1992.

L. Boccardo, D. Giachetti, J.-I. Diaz and F. Murat, Existence and
regularity of renormalized solutions for some elliptic problems involving
derivation of nonlinear terms, J. Differential Equations, 106, (1993),
215-237.

Y. Chen, S. Levine and M. RaoVariable exponent, linear growth func-
tionals in image restoration. SIAM J. Appl. Math., 66, 1383-1406
(2006).

R.-J. DiPerna, P.-L. Lions;On the Cauchy problem for Boltzmann equa-
tions : Global existence and weak stability,Ann. Math., 130, (1989),
321-366.

T. Donaldson.lnhomogeneous Orlicz-Sobolev spaces and nonlinear
parabolic initial value problems. J. Differential Equations, 16:201-256,
1974.

A. Elmahi and D. Meskine.Parabolic equations in Orlicz spaces. J.
London Math. Soc. (2), 72(2):410-428, 2005.

A. Elmahi and D. Meskine. Strongly nonlinear parabolic equations with
natural growth terms in Orlicz spaces. Nonlinear Anal., Theory Methods
Appl., 60(1):1-35, 2005.

A. Elmahi and D. Meskine,Strongly nonlinear parabolic equations with
natural growth terms in Orlicz spaces, Nonlinear Analisis. Theory,
Methods and Applications, 60, (2005), pp. 1-35.

J.P. Gossez, Nonlinear elliptic boundary value problems for equation
with rapidly or slowly increasing coefficients, Trans.Amer. Math.Soc,
190, (1974) PP;217-237.

J.-P. Gossez, Nonlinear elliptic boundary value problems for equations
with rapidly or slowly increasing coefficients, Trans. Amer. Math. Soc.,
190, (1974), pp. 163-205.

P. Gwiazda, P. Wittbold, A. Wroblewska-Kaminska and A. Zimmer-
mann, Renormalized solutions to nonlinear parabolic problems in gen-
eralized Musielak-Orlicz spaces ELSEVIER, (2015).

P. Gwiazda, 1. Skrzypczak, A. Zatorska-Goldstein, Existence of renor-
malized solutions to elliptic equation in Musielak-Orlicz space J. Dif-
ferential Equations 264 (2018) 341-377.

S. Hadj Nassar, H. Moussa and M. Rhoudaf, Renormalized Solution for
a nonlinear parabolic problems with noncoercivity in divergence form
in Orlicz Spaces, Applied Mathematics and Computation 249 (2014)
253-264.

A. KUFNER, O. JHON, B. OpIC, Function spaces
1977.

0. Kovaicik, J. Rakosnik; On spaces LP@) and Wk’p(x), J. Czechoslo-
vak. Math. 41(1991), 592-618.

R. Landes and V. Mustonen, A str ongly nonlinear parabolic initial-b
oundary value problem , Ark. Mat. 25 (1987), 2940.

C. Leone and A. Porretta Entropy solutions for nonlinear elliptic
equation in L', Nonlinear Analysis. Theory. Methods and Applications,
Vol. 32, No. 3, pp. 325-34, 1998.

P-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1: Incom-
pressible models,Oxford Univ. Press, (1996).

H. Moussa, F. Ortegén Gallego and M. Rhoudaf, Capacity Solution
to a Coupled System of Parabolic-Elliptic Equations in Orlicz-Sobolev
Spaces. NoDEA 25:14 (2018) 1-37.

F. Murat, Soluciones renormalizadas de EDP elipticas non lineales,
Cours a [’Université de Séville, Publication R93023, Laboratoire
d’Analyse Numérique, Paris VI, (1993).

J. Musielak; Modular spaces and Orlicz spaces ;Lecture Notes in Math.
1034 (1983).

F. Ortegén Gallego, M. Rhoudaf and H. Sabiki, On a nonlinear
parabolic-elliptic system in Musielak-Orlicz spaces. EIDE 2018, No.
121 (2018) 1-36.

H. Nakano, Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd.,
Tokyo, 1950.

Porretta, A.:Existence results for strongly nonlinear parabolic equations
via strong convergence of truncations. Ann. Mat. Pura Appl. (IV)177,
143172 (1999)

A. Prignet, Existence and uniqueness of entropy solutions of parabolic
problems with L1 data, Nonlin. Anal. TMA 28 (1997), pp. 1943-1954.
K.R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorhe-
ological materials , Contin. Mech. Thermodyn. 13 (2001) 59-78.

M. Ruzicka, Electrorheological fluids: modeling and mathematical the-
ory., Lecture Notes in Mathematics, Springer, Berlin, 2000.

Academia, Praha,

62



International Journal on Optimization and Applications
LJOA. Vol. 1, Issue No. 1, Year 2021, www.usms.ac.ma/ijoa
Copyright ©2021 by International Journal on Optimization and Applications

QA

[39] P. Perona and J. Malik; Scale-space and edge detection using anisotropic
diffusion, IEEE Trans. Pattern Anal. Machine Intell., 12 (1990), pp. 629-
639.

[40] J. Simon, Compact sets in the space L'(0,T;B), Ann. Mat. Pura.
Appl. 146 (1987) 65-96.

[41] V. Zhikov, Averaging of functionals of the calculus of variations and
elasticity theory. Math. USSR Izvestiya, 29(1), 33-66 (1987).

[42] M. Tienari, A degree theory for a class of mappings of monotone type in
Orlicz-Sobolev spaces, Ann. Acad. Scientiarum Fennice Helsinki(1994).

IJOA ©2021

63





